Permeation Issues Slides

Ben Hancock
California State Air Resources Board
PTSD MSAB Analysis Section
August 11, 2006

WSPA Comments on ARB Ethanol Permeation Inventory Estimates

- WSPA Comments of April 2006
 - Assumption that 90% of resting losses are permeation, at all temperatures, for all vehicle classes and technologies
 - Augmentation ratio for liquid leakers is assumed to be 1.05. The data support 1.02. Difference is 1 tpd or 4-5%
 - Ambient temperatures are used when tank temperatures should be used
- WSPA Comments May 2006. CARB had to make a number of untested assumptions to model permeation
 - Augmentation Ratio
 - Permeation Contribution to each evaporative emissions process: diurnal, resting, hot soak, running
- Comments July 24, 2006
 - ARB method overpredicts the ethanol permeation increase at higher temperatures
 - If it overpredicts at higher temperatures, it probably overpredicts at lower temperatures (i.e. CA 8-h Ozone standard temps) as well

ARB Response: Liquid Leaker Augmentation

- We have no experimental basis
- Expect it to be between 1.0 and 1.2 (experimental value for moderates)
- Having absolute emissions be equal to moderates (1.1 g/d) is no more valid than the choice of 1.05. E65 avg moderates was 1.8 g/d. Highest rigs tested 2.5 and 2.7 g/d.
- At 1.05, about 1 tpd impact statewide.
- 1.05 is as good a number as any. We're staying with it.
- Until further testing comes up with a better value.

- •MTBE Permeation larger than Resting
- •EtOH permeation larger than Augment x Resting

4

EPA 65-105 Ambient & Fuel Temps

- Correlating with fuel temperature results in much lower permeation fractions
- •Permeation fraction is resting loss at fuel temp divided by diurnal loss at fuel temp

Effect of Correlating with Fuel Temps

- Permeation fractions are about cut in half
- Daily Effect is down about 20% for diurnal

Temperature Dependence Results Comparison

- Diurnal Permeation
- •E65 Diurnals are 24-h basis. EMFAC diurnals exclude running time (about 1 h/d) and hot soak time (about 4 h/d). EMFAC permeation values shown are diurnal plus hot soak (D+HS).
- •EMFAC and Steady-state extrapolation compare well for profiles in 80s.
- •SCOS temp profile result is higher than E65 on 65-105.

		Diurnal	SCAB		
	Temp	Permeation	11.8		
Source	Range	Difference	M Vehicle		
	deg F	g/d/veh	TPD		
E65 hour-by-hour	65-105	1.5	19.5		
EMFAC 2002 Summer SCAB	62-83	0.8	10.0	*D+HS	
EMFAC SCAB Fed 8-h Summer	63-86	0.8	10.5	*D+HS	
EMFAC SCAB Cal 8-h	65-88	0.9	11.7	*D+HS	
EMFAC SCOS Episode SCAB	70-98	1.7	22.6	*D+HS	w/o Liq Lkrs
E65 SS	62-83	0.7	9.1		
E65 SS	63-86	0.8	10.4		
E65 SS	65-88	0.9	11.7		
E65 SS	70-98	1.4	18.2		

EMFAC Resting Temperature Dependence

- •Ford Study found 8 to 12%/deg C.
- •Normal Correlations are within range.
- •Moderate Fuel-injected correlations are steeper.

EMFAC	Resting Loss	5	
Tech Group	del T for 100%		
	deg F	%/deg F	%/deg C
FI Zero Evap Norm	15.9	6.3	11.3
FI Enhanced Evap Normal	16.3	6.1	11.0
FI Pre-Enhanced Evap Normal	16.2	6.2	11.1
Carb 77+ Norm	17.0	5.9	10.6
Carb 77- Norm	18.8	5.3	9.6
FI Zero Evap Moderate	10.7	9.4	16.8
FI Enhanced Evap Moderate	10.6	9.4	17.0
FI Pre-Enhanced Evap Moderate	10.6	9.5	17.1
Carb 77+ Moderate	18.2	5.5	9.9
Carb 77- Moderate	19.1	5.2	9.4
Liquid Leaker	41.4	2.4	4.4

- Steady state results much flatter with temperature
- •E65 hour by hour diurnal show same pattern as EMFAC

			Steady State Results			Hour-by-hour results (EtOH)		
age			MTBE dbl etoh dbl		gaso dbl	Resting	Diurnal HB	
у			deg F	deg F	deg F	deg F	deg F	
3	1	2001 Tacoma P/U	26.0	34.9	32.3	12.6	19.4	
4	2	2000 Odyssey Van	21.5	24.6	24.7	10.7	17.2	
5	3	1999 Corolla	23.7	24.5	20.0	10.8	18.1	
7	4	1997 T&C Van	25.4	24.3	35.3	14.7	17.8	
9	5	1995 Ranger P/U	26.4	24.4	24.9	13.7	17.9	
11	6	1993 Caprice	21.0	17.0	18.0	11.6	13.2	
13	7	1991 Accord	20.5	26.8	25.5	11.3	19.4	
15	8	1989 Taurus	26.8	26.4	30.7	15.9	21.1	
19	9	1985 Sentra	20.2	32.8	30.8	14.3	23.0	
26	10	1978 Cutlass	27.2	33.7	30.5	11.1	25.2	
		Population	24.1	25.0	24.8	13.8	19.1	15.0
		Hexane Water	56.1 33.4					
		vv atti	33.4					

E65 Rig 2 Diurnal Results

- Steady State rises strongly with temp
- •Hourly and EMFAC correlation below steady state but steeper

Model Temperature Sensitivity

- Ford study correlated permeation to Clausius Clapeyron form. Found fractional change [(delta E/E)/delta T] of 0.08 to 0.12 per deg C (15 to 23 deg F for 100% change or doubling)
- E65 study found higher temperature slope for hour-by-hour results and lower slope for steady state results. Slopes were different for EtOH, MTBE, and non-oxygenated gasoline.
- EMFAC modeling method found no temperature dependence to augmentation, but used resting loss as a surrogate for permeation. Resting loss has higher temperature dependence than diurnal.
- EMFAC resting loss correlations have same or close temperature dependence to E65. Moderates have high dependence.
- Methods seem to compare pretty closely for temperature profiles peaking in high 80s. EMFAC method is much higher than E65 results in high 90s.